Package: causalCmprsk 2.0.0

Bella Vakulenko-Lagun

causalCmprsk: Nonparametric and Cox-Based Estimation of Average Treatment Effects in Competing Risks

Estimation of average treatment effects (ATE) of point interventions on time-to-event outcomes with K competing risks (K can be 1). The method uses propensity scores and inverse probability weighting for emulation of baseline randomization, which is described in Charpignon et al. (2022) <doi:10.1038/s41467-022-35157-w>.

Authors:Bella Vakulenko-Lagun [aut, cre], Colin Magdamo [aut], Marie-Laure Charpignon [aut], Bang Zheng [aut], Mark Albers [aut], Sudeshna Das [aut]

causalCmprsk_2.0.0.tar.gz
causalCmprsk_2.0.0.zip(r-4.5)causalCmprsk_2.0.0.zip(r-4.4)causalCmprsk_2.0.0.zip(r-4.3)
causalCmprsk_2.0.0.tgz(r-4.4-any)causalCmprsk_2.0.0.tgz(r-4.3-any)
causalCmprsk_2.0.0.tar.gz(r-4.5-noble)causalCmprsk_2.0.0.tar.gz(r-4.4-noble)
causalCmprsk_2.0.0.tgz(r-4.4-emscripten)causalCmprsk_2.0.0.tgz(r-4.3-emscripten)
causalCmprsk.pdf |causalCmprsk.html
causalCmprsk/json (API)

# Install 'causalCmprsk' in R:
install.packages('causalCmprsk', repos = c('https://bella2001.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/bella2001/causalcmprsk/issues

On CRAN:

4.48 score 3 stars 8 scripts 298 downloads 5 exports 16 dependencies

Last updated 1 years agofrom:af47e89026. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 27 2024
R-4.5-winOKOct 27 2024
R-4.5-linuxOKOct 27 2024
R-4.4-winOKOct 27 2024
R-4.4-macOKOct 27 2024
R-4.3-winOKOct 27 2024
R-4.3-macOKOct 27 2024

Exports:fit.coxfit.nonparget.numAtRiskget.pointEstget.weights

Dependencies:clicodetoolsdata.tabledoParallelforeachglueinlineiteratorslatticelifecyclemagrittrMatrixpurrrrlangsurvivalvctrs

Nonparametric and Cox-based estimation of average treatment effects in competing risks using 'causalCmprsk' package

Rendered fromcmp_rsk_RHC.Rmdusingknitr::rmarkdownon Oct 27 2024.

Last update: 2023-07-04
Started: 2020-08-31